##### COURSE PAGE

#####

##### PH603: Physics of Ultracold Atoms (MSc 4th Semester Elective)

#####

#####

##### Lecture 1 (06/01/2020):

#####

##### Course Syllabus and teaching plan for this course was discussed

#####

#####

##### Lecture 2 (08/01/2020)

#####

##### How Cold is Ultracold?, Quantum gas, atomic systems, Resonances, Atoms

##### and photons, Quantum Systems.

#####

##### Lecture 3 (10/01/2020)

#####

##### Doppler effect and laser, Doppler cooling of atomic gas using lasers

#####

##### Lecture 4 (17/01/2020)

#####

##### Concept of Doppler cooling revisited, Energy and Momentum Picture in detail,

##### Animations and Videos, Draw backs of Doppler cooling to reach Ultra low temperatures, Effect of Magnetic Field on atoms, Splitting of Hyper-fine lines and Zeeman effect.

#####

#####

##### Lecture 5 (20/01/2020)

#####

##### Limitations of Doppler Cooling, Effect of Light and Magnetic Field on atoms

#####

#####

##### Lecture 6 (22/01/2020)

#####

##### Concept of Zeeman Splitting, Spatial effects of light and polarization's on atoms,

##### Introduction to Magneto-Optical Trapping (MOT)

#####

#####

##### Lecture 7 (24/01/2020)

#####

##### MOT and Doppler Cooling Sequence, Importance of MOT, Experiment Sequence

#####

##### Last year Lectures/REFERENCES

#####

##### Lecture 2 ( 08/01/2019):

#####

##### Origin of cooling mechanisms and radiation pressure on atomic beams

#####

##### Supplementary review articles given in below links

#####

#####

#####

#####

#####

##### Lecture 3 ( 09/01/2019):

#####

#####

##### Relevant videos on Optical molasses (Click to see videos)

#####

#####

##### Laser cooling leads to a velocity dependent force and it is limited to Doppler limited temperature. Spatial

##### confinement could be added using Zeeman splitting this is called as Magneto Optical Trapping (MOT).

#####

##### Introduction to MOT is given in this lecture

#####

##### Lecture 4 ( 11/01/2019):

#####

#####

##### Concept of Magneto Optical Trapping (MOT) using two level model will be explained in this lecture

#####

##### Lecture 5 ( 15/01/2019)

#####

##### Spatial confinement of atoms achieved with the Zeeman Splitting

##### Polarization of light play a major role in space selective laser cooling

##### Sigma+ Sigma- configuration is discussed

##### MOT configuration is discussed

#####

##### Lecture 6 (17/01/2019)

#####

##### Difference between Optical Molasses and MOT discussed

#####

##### Laser frequency de-tunings for MOT

#####

##### Vacuum Chamber of MOT and Rb atoms inside the Science Chamber

#####

##### Experimental Sequence of MOT

#####

##### Lecture 7 (18/01/2019)

#####

##### Mathematical formulation of Laser cooling Force

#####

##### Momentum equation and derivation of scattering Force

#####

##### Discussion on Semi-classical treatment on derivation of excited state population

##### using Time dependent Schrodinger wave equation

#####

#####

##### Lecture 8 (22/01/2019)

#####

##### Scattering Force in the presence of Co-propagating and Counter Propagating beams

#####

##### Mathematical derivation of Net cooling Force (Optical Molasses)

#####

##### Force takes the form of a velocity dependent damped force

#####

#####

##### Lecture 9 (24/01/2019)

#####

##### Forces in Magneto-optical trap

#####

##### Detuning and Scattering Force for sigma + and sigma minus polarized light

#####

##### Mathematical representation

#####

##### Lecture 10 (25/01/2019)

#####

##### Mathematical derivation of net cooling Forces in Magneto-optical trap (Continued)

#####

##### Lecture 11 (29/01/2019)

#####

##### Mathematical derivation of net cooling Forces in Magneto-optical trap

#####

##### Net force takes the form of a Damped Harmonic Oscillator

#####

##### Heating and Cooling rates in MOT

#####

##### Derivation of Doppler limit Temperature achieved in MOT

##### Limitations of MOT

##### Relevant Materials

#####

##### Lecture 12 (07/02/2019)

#####

#####

#####

##### Lecture 13 (08/02/2019)

#####

#####

#####

##### Lecture 14 (12/02/2019)

#####

#####

##### Role of Repumping Laser light in Multi-level atoms

#####

##### Lecture 15 (14/02/2019)

#####

#####

##### Lecture 16 (15/02/2019)

#####

#####

##### A conservative potential for laser cooled atoms

#####

##### Lecture 17 (19/02/2019)

#####

##### Quiz I

#####

#####

##### Lecture 18 (05/03/2019)

#####

##### Magnetic Trap Loading and Concept of Evaporative Cooling

#####

##### Radio frequency based Evaporative cooling

#####