INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 : Physics Tutorial 1

1. Let \vec{A} be an arbitrary vector and let \hat{n} be a unit vector in some fixed direction. Show that $\vec{A}=(\vec{A} \cdot \hat{n}) \hat{n}+(\hat{n} \times \vec{A}) \times \hat{n}$.
2. A particle moves with $\dot{\theta}=\omega=$ constant and $r=r_{0} e^{\beta t}$, where r_{0} and β are constants. Show that for certain values of β, the particle moves with $a_{r}=0$.
3. A bead moves along the spoke of a wheel at constant speed $u \mathrm{~ms}^{-1}$. The wheel rotates with uniform angular velocity $\dot{\theta}=\omega \operatorname{rad~s}^{-1}$ about an axis fixed in space. At $t=0$ the spoke is along x axis, and the bead is at origin. Find the velocity and acceleration at time t.

- In polar coordinates
- In cartesian coordinates.

Also plot the velocity vector at different time (t).

Figure 1: Bead in the spoke
4. The rate of change of acceleration is sometimes known as "jerk". Find the direction and magnitude of jerk for a particle moving in a circle of radius R at angular velocity ω. Draw a vector diagram showing the instantaneous position, velocity, acceleration and jerk.
5. A tire rolls in a straight line without slipping. Its center moves with constant speed V. A small pebble lodged in the tread of the tire touches the road at $t=0$. Find the pebble's position, velocity, and acceleration as functions of time.

