

## PH103 : Physics Tutorial 1

- 1. Determine the velocity and acceleration vector if for a particle having constant r and  $\theta = \omega t + \frac{\alpha t^2}{2}$  where  $\omega$  and  $\alpha$  are angular velocity and angular acceleration (both are constants in this problem) respectively in (a) polar co-ordinate and(b) cartesian co-ordinate systems
- 2. Find the angle between two vectors  $\vec{A}$  and  $\vec{B}$ , If (a)  $\left|\vec{A}\right| = \left|\vec{B}\right| = \left|\vec{A} + \vec{B}\right|$ (b)  $(\vec{A} \times \vec{B}) \times \vec{A} = \vec{B} \times (\vec{B} \times \vec{A})$  and  $\left|\vec{A}\right|^2 = \left|\vec{B}\right|^2$
- 3. A particle is subjected to a radial force  $\vec{F} = f(|\vec{r}|)\hat{e}_r$ . Determine the vector  $\vec{V} = \vec{F} \times \vec{L}$ , the cross product of this radial force with the angular momentum of the particle on which the force acts. Find the components of  $\vec{V}$  along  $\hat{e}_r$  and along  $\hat{e}_{\perp}$  where  $\hat{e}_r$  and  $\hat{e}_{\perp}$  are orthogonal to each other.
- 4. Imagine a particle moving outward along a spiral. The trajectory is given by r=Bθ, where B is a constant. B=<sup>1</sup>/<sub>π</sub> m/rad, θ increases according to θ = <sup>αt<sup>2</sup></sup>/<sub>2</sub>, where α is a constant.
  (a) Sketch the motion, and indicate the velocity and acceleration at a

(a) Sketch the motion, and indicate the velocity and acceleration at a few points

(b) Show that the radial acceleration is zero when  $\theta = \frac{1}{\sqrt{2}}$  rad

(c) At what angles do the radial and tangential accelarations have equal magnitude?

5. A tire rolls in a straight line without slipping. Its center moves with constant speed V. A small pebble lodged in the tread of the tire touches the road at t = 0. Find the pebble's position, velocity, and acceleration as functions of time.