INDIAN INSTITUTE OF TECHNOLOGY

PH103 PHYSICS

TUTORIAL 7 for G1 to G6

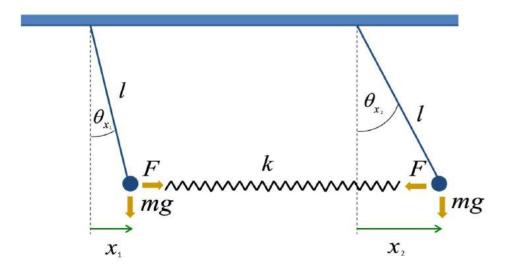

- 1. For a gigantic overdamped harmonic oscillator (as shown in figure below), natural frequency ω_0 is given as 10 rad/s and damping parameter $\gamma = 20/s$. The initial conditions of the oscillator are x(0) = -20m and v(0) = -600m/s.
 - (a) Using the initial conditions, obtain the constants A and B in the solution of over damped oscillator as mentioned in the class
 - (b) Will the system cross equilibrium at finite time?
 - (c) Plot x(t) v/s t.

Figure 1: The gigantic damped oscillator

- 2. Show that for the case of over damped oscillator $\frac{dx(t)}{dt}$ varies linearly with x(t) when $t \to \infty$?
- For a driving force $F(t) = A \cos \omega_d t$, the solution of the driven damped oscillator is assumed to be $x(t) = A\cos(\omega_d t + \phi)$. Under what condition of ϕ , velocity of this driven damped oscillator becomes exactly in phase with the driving force?.

Consider two pendula which are coupled together with a spring having a constant k as shown in figure below. Assume that the equilibrium positions are small enough that small angle approximation could be used. Find the normal modes and normal co-ordinates for this system?

5

Consider 2 masses connected via springs which has constants k. Assume this coupled oscillator is immersed in a fluid so that both masses feel a damping force, $F_f = -bv$. Solve for $x_1(t)$ and $x_2(t)$. Assume underdamping.

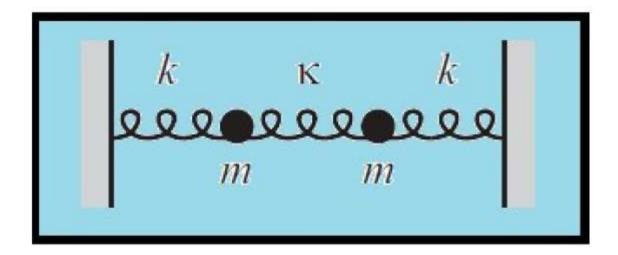


Figure 3: Damped coupled oscillator