INDIAN INSTITUTE OF TECHNOLOGY PATNA

## PH103 : Physics Tutorial 9

1. For a gigantic overdamped harmonic oscillator (as shown in figure below), natural frequency  $\omega_0$  is given as 10 rad/s and damping parameter  $\gamma = 20/s$ . The initial conditions of the oscillator are x(0) = -20m and v(0) = -600m/s.

(a) Using the initial conditions, obtain the constants A and B in the solution of over damped oscillator as mentioned in the class

- (b) Will the system cross equilibrium at finite time?
- (c) Plot x(t) v/s t.



Figure 1: The gigantic damped oscillator

- 2. Show that for the case of over damped oscillator  $\frac{dx(t)}{dt}$  varies linearly with x(t) when  $t \to \infty$ ?
- 3. Consider a driven damped oscillator, with  $\gamma \ll \omega_0$ , where  $\omega_0$  is the natural frequency and damping parameter is given as  $\gamma$ . Show that when the driving frequency  $\omega_d$  becomes equal to  $\omega_{res} \pm \gamma$  the amplitude  $A(\omega_d) = \frac{A_{max}(\omega_{res})}{\sqrt{2}}$ , where  $\omega_{res}$  is the resonance frequency.
- 4. For a driving force  $F(t) = A \cos \omega_d t$ , the solution of the driven damped oscillator is assumed to be  $x(t) = A\cos(\omega_d t + \phi)$ . Under what condition of  $\phi$ , velocity of this driven damped oscillator becomes exactly in phase with the driving force?.