
INDIAN INSTITUTE OF TECHNOLOGY PATNA DEPARTMENT OF PHYSICS

Tutorial 7

12/02/21

PH103

- 1
- 1. A person is standing still on a location P as shown in figure 1 on Earth.
 - a. Plot the nature of F_{cent}.
 - b. What is the effective gravity felt by him due to the centrifugal force?

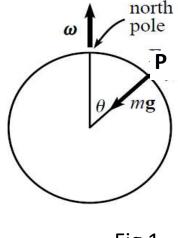
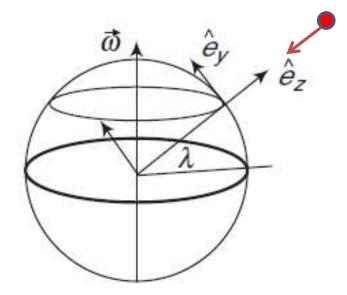
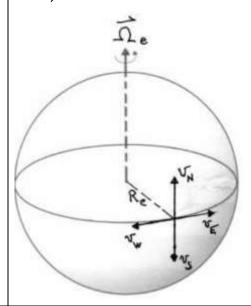
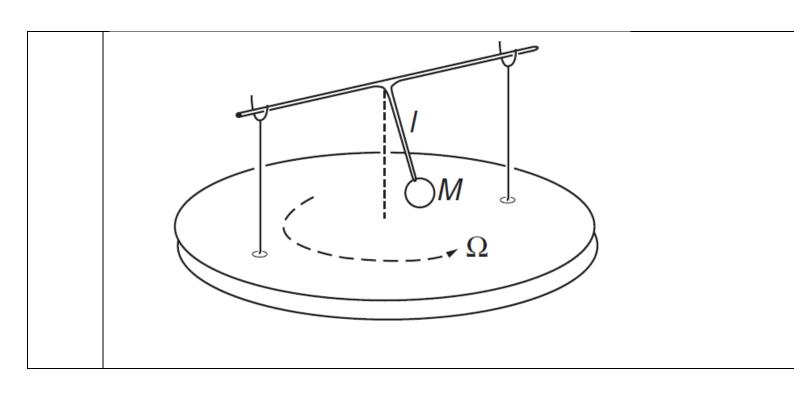




Fig 1


- Consider an object is dropped under gravity in the $-e_z$ direction as shown in figure. In the problem, consider λ as the latitude and ω as the angular velocity of the earth.
 - a. What is the nature of the Coriolis force?
 - b. Find the coriolis speed and deflection of the object due to the force.
 - c. What is the nature of Coriolis force if the object is thrown upward.

- A high speed hydrofoil races across the ocean at the equator at a speed of 200 miles/hour. Let the acceleration of gravity for an observer at rest on the earth be g. Find the fractional change in gravity measured by a passenger on the hydrofoil due to coriolis force when the hydrofoil heads in the following directions
 - a) East
 - b) West
 - c) South
 - d) North

A pendulum is rigidly fixed to an axle held by two supports so that it can swing only in a plane perpendicular to the axle. The pendulum consists of a mass M attached to a massless rod of length l. The supports are mounted on a platform which rotates with constant angular velocity Ω . Find the pendulum's frequency assuming that the amplitude is small.

