PH103 : Physics
 Tutorial 2

1. An ant crawls on the surface of the ball of radius b in a manner such that the ant's motion is given in spherical coordinate system by the equation :

$$
r=b \quad \phi=\omega t \quad \theta=\frac{\pi}{2}\left[1+\frac{1}{4} \cos (4 \omega t)\right]
$$

Find the speed of the ant as a function of the time t. What sort of path is represented by above equation?
2. The equation for the outer edge of a sphere of radius R is given by

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

Find the volume of sphere in Cartesian, Cylindrical and Spherical coordinate system.
3. Find the volume of a cone of radius R and height H using suitable coordinate system.
4. Find the potential of a uniformly charged spherical shell having a surface charge density σ of radius R at point P as shown in below figure.
Hint
Use the law of cosines to express r :

$$
r^{2}=R^{2}+z^{2}-2 R z \cos \theta^{\prime}
$$

5. Consider a liquid flowing into a circular aperture of radius a (as shown in figure) with an entering velocity $\vec{v}_{I}=\kappa \hat{e_{z}}$. In region II the fluid velocity is given as $\vec{v}_{I I}=\frac{\alpha x-\gamma y}{\sqrt{x^{2}+y^{2}}} \hat{e_{x}}+\frac{\alpha y+\gamma x}{\sqrt{x^{2}+y^{2}}} \hat{e_{y}}+\beta \hat{e_{z}}$. At a distance H from the circular aperture, a wall is placed with another circular opening with same radius. Find the mass of liquid exiting from region II to region III.
Figure shown in next page

Note: Both the circular apertures are in same line

